凝汽器换管-胶球清洗装置-二次滤网_连灵动

Deaerator type
Your location : Home > Product > Deaerator type
Headless deaerator
Headless deaerator
Headless deaerator
Headless deaerator

Headless deaerator

The headless deaerator is a horizontal container composed of a cylindrical body and two heads. Adopting two saddle supports with sliding supports on their sides, the built-in headless deaerator has gained market share since its inception.
Online inquiry
下一產品 : Dosing device
  • Content details

Introduction to headless deaerator:


For the purpose of internal thermal power plants, the regular deaerator with deaerator head is commonly used, and its types include rotary membrane type, spray filler type, water spray pan type, etc; There are two installation types: vertical deaerator head and horizontal deaerator head. The deoxidation process is completed at the deaerator head, including the preliminary deoxidation at the rotary membrane (spray layer), which can remove most of the gas in the water, carry out - degree deoxidation at the lower packing layer or spray tray, and remove the residual gas in the water. With the continuous development of deoxygenation technology, built-in headless deaerator has begun to occupy a certain market share.


In the process of boiler feedwater treatment, deoxygenation is a non critical step. Oxygen is the main corrosive substance in the water supply system and boiler. Oxygen in the water supply should be quickly removed, otherwise it will corrode the water supply system and components of the boiler. Corrosion will produce iron oxide, which will enter the boiler, deposit or adhere to the boiler tube wall and heating surface, forming difficult to dissolve channels to poor heat transfer iron scale. Moreover, corrosion will cause pits on the inner wall of the pipeline and increase the resistance coefficient. When pipeline corrosion is severe, accidents may even occur- According to regulations, steam boilers with an evaporation capacity of 2 tons or more per hour and hot water boilers with a water temperature of 95 ℃ or more are required to undergo deoxygenation- In recent years, many boiler water treatment companies have been exploring high and economical methods for deoxygenation of warm water. Lianyungang Huaneng Electric Power Auxiliary Equipment Co., Ltd. has years of experience in designing and producing deaerators. Its design and manufacture of - head deaerators (also known as - type built-in - head deaerators, - head spray deaerators) adopts advanced design schemes and manufacturing processes, which is very --- compared with the standard deaerators in the same industry. Several existing and ongoing enterprises within the project have adopted the head deaerator technology, and all the enterprises that have been put into operation have achieved good operational results.


After being regulated by the inlet control valve, the main condensate (including supplementary water) from the low-pressure heater enters the deaerator and is combined with other drainage channels in the deaerator. It is then sprayed out through a nozzle or orifice tube to form an umbrella shaped water film check valve, which conducts combined heat and mass transfer with the heating steam from bottom to top. The feedwater quickly reaches saturation temperature under working pressure. At this point, the majority of dissolved oxygen and other gases in the water are basically resolved by the check valve, achieving the purpose of deoxygenation. Dissolved oxygen and other gases that precipitate from water continuously flow out of the deaerator along with the residual steam through the exhaust pipe. The high pressure heater drain that enters the deaerator will also have a portion of water flash vaporized as heating steam. After releasing heat, all heating steam is condensed into condensate, which flows out from the deaerator water outlet downwards. In order to maintain the saturation temperature of the water temperature inside the deaerator at working pressure, heating steam can be introduced into the deaerator through a reboiler. The deoxygenated water enters the high-pressure heater after being pressurized by the feedwater pump through the outlet pipe.


The headless deaerator is a horizontal container composed of a cylindrical body and two heads. Two saddle supports are used, with sliding supports on one side and fixed supports on the other. There are two inlet pipes arranged on the side of the cylinder. The upper part is equipped with main steam, secondary temperature measurement ports, exhaust ports, safety valve ports, and backup ports. The side is equipped with liquid level gauge ports, overflow ports (equipped with external overflow devices), and two outlet ports are arranged at the lower part. There are two boiling steam heating ports and one discharge port. The internal components mainly consist of a steam exhaust pipe device placed underwater, a pre heating strip for water inlet, and a steam water heater. There is a manhole device for repair.


-Headless deaerator structure - Description:


The tower deaerator designed and manufactured by the company can be divided into two types based on the inlet atomization method: using chemical rotary membrane components and integral constant speed nozzles.


-The type tower deaerator is mainly composed of a water supply tank, which contains components such as a steam separation device, a butterfly constant velocity nozzle, a steam water separation device, a throttling steam spray pipe, and an anti vortex device for water outlet. This type of deaerator has a compact structure, rapid heating, and effective deaeration. Two sets of steam injection pipes act on the water surface and underwater respectively. A large number of throttling nozzles are installed above the water surface steam injection pipe, corresponding to the upper rotary film pipe, allowing steam to directly interact with the rotary film water skirt; A blowing port is opened laterally to create a steady wind force on the water surface, which blows the residual oxygen gas remaining on the water surface out of the water tank. The other inlet of the steam main pipe is changed to enter from the lower part, and throttling technology is also used to maximize the supply of internal temperature in the water tank, ensuring even underwater steam injection and dynamic disturbance of surface steam, and sufficient deoxygenation.


Headless deaerator maintenance:


When the deaerator is out of service, it should be prevented from damage. The deaerator should be 刪除lated and a flange cover (for water supply, steam, exhaust, etc.) should be installed on the general pipeline, or two shut-off valves should be installed on each connecting pipe. Deaerator disconnection. After the pressure inside the deaerator is released, the deaerator is disconnected and the manhole is opened. Wash the deaerator thoroughly to remove any possible corrosive substances. Carefully inspect safety valves, shut-off valves, etc., and apply anti rust oil. If the deaerator is installed in a dry boiler room, the manhole can be opened for ventilation to keep the deaerator dry.


Headless deaerator technology - for:


a. Equipment complete - grid - regulated head deaerator;


b. Saves construction costs, reduces the height of the deaeration room by 3-4 meters;


c. Low exhaust loss.


d. When the load variation range is between 10% and 110%, the oxygen content in the effluent can be maintained at -7% μ G/L;


e. Single container structure, system design is simple, chemical, avoids stress cracks, and is earthquake resistant and reliable;


f. - Lighter, with low operating vibration;


g. Adopting a rotary film type chemical design or a constant speed nozzle, rotating components, maintenance, and ensuring safety and reliability;


h. The diameter and interface design are flexible, facilitating transportation and installation layout.


Precautions for headless deaerator:


1. The nozzle should be installed after flushing the entire system.


2. When the nozzle is put into use, it should be confirmed that there is no air in the pipeline and only condensation water is filled, which can prevent water hammer from causing nozzle damage.


3. Do not start the deaerator when the water level is -1/4. When the condensate water level exceeds the specified value, the deaerator cannot reach the correct temperature and pressure, which can cause unstable startup.


4. Do not leave the nozzle fully open, and do not operate the unit during startup. When there is not enough air, there is a risk of rapid pressure drop. If the pressure is maintained at -, allow a slow increase in nozzle flow rate.


5. In order to maintain sufficient temperature inside the deaerator (in warm up state), it is recommended to close the exhaust valve of the deaerator. Note that at some times, the deaerator will be subjected to external vacuum pressure.


When the deaerator reaches the control value and the oxygen content is qualified, the exhaust valve can be adjusted to reduce steam loss to - low.


When it is found that the internal steam discharge of the deaerator is not smooth, the blowing steam pipe can be opened appropriately to accelerate the flow of steam above the water surface.


When the deaerator needs to be inspected internally, it should be confirmed that the deaerator has been emptied and has reached room temperature before opening the manhole to enter.


Introduction to the built-in nozzle of headless deaerator:


The key component of the disc nozzle is a balanced disc made of stainless steel material. These discs are sandwiched around and tightened with a lever. At the nozzle, there is a flow distributor installed with a small hole area and a dust collection area. There is a bottom adapter in the rear area, which includes an anti eddy current device. There are a certain number of centering rings in the surrounding area of the nozzle to prevent damage to the disc during transmission and installation and disassembly of the deaerator. Water enters the nozzle through the pipeline connecting the main condensate, and through the small hole between the flow distributor and the clamp, the main condensate enters the disc room. Due to the pressure difference between the nozzle and the steam space of the deaerator, the disc opens and the main condensate forms a water film. The tooth shaped design around the disc, with alternating water retaining films, creates water droplets. There are evenly distributed grooves around the periphery, which support the cartridge disc when subjected to external pressure.


2. Typical design nozzle parameters and -- curve-


a. The butterfly nozzle used by the company's deaerator consists of two opposing butterfly shaped spring element clamps (equivalent to two standard butterfly springs installed face-to-face). When the internal pressure of the nozzle increases, the butterfly shaped spring element undergoes bouncing and warping, and water sprays out from the gap of the clamp to form a water film. Sawtooth shaped knots at the junction of the nozzle break and disturb, forming small droplets of mist. As the load gradually increases, the pressure increases, the flow rate increases, and the flow rate increases. As a result, the force acting on the nozzle increases, causing the disc to overcome tension and move, resulting in an increase in the nozzle's cross-sectional area. Its designed operating temperature is 0-400 ℃, suitable for water and steam as media, with a nominal pressure difference of 0.05MPa.


Working principle of headless deaerator:


The condensed water enters the steam space of the deaerator from the constant velocity nozzle for preliminary deaeration, and then flows into the water space towards the outlet; The heated steam is uniformly arranged along the axial direction of the deaerator cylinder through the exhaust pipe. The heated steam is sent underwater into the deaerator through the exhaust pipe, combined with water for heating. At the same time, it disturbs the water flow and brings dissolved oxygen and other non condensable gases out of the water surface, achieving the purpose of deoxygenation of the condensate. The longer the process of water in the deaerator, the more effective it is in deoxygenating the water. Steam is sent from underwater, and the uncondensed heating steam (now saturated steam) carries non condensable gas and escapes from the water surface, flowing towards the exhaust area of the nozzle (the exhaust area around the nozzle is the unsaturated water film (fog) area). The uncondensed heating steam in the exhaust area condenses into water, and the non condensable gas is discharged from the exhaust port. In the process of non condensable gas flowing towards the exhaust outlet, under a fixed water volume, the larger the diameter of the deaerator cylinder, the smaller the partial pressure of non condensable gas in the vapor space. This can control the diffusion of non condensable gas on the liquid surface and avoid the occurrence of secondary dissolved oxygen. Therefore, the deaerator cylinder adopts a large diameter of -.


Operating instructions for headless deaerator:


When starting the water supply system and deaerator, it is necessary to check the correct installation of all accessories and pipe flanges. If the equipment adopts chemical hand anti-corrosion, during operation, the deaerator should be ventilated and discharged for a certain period of time. When using preservatives in bags, they should be removed when starting the deaerator. Then, check if there are any remaining tools inside the deaerator, such as nuts, bolts, etc., and remove them. Start and clean the deaerator, tighten the fasteners. Confirm that the sliding support can freely expand during the normal operation of the deaerator. All accessories on the deaerator should be installed correctly and in the correct on/off state. All pipelines entering and exiting the deaerator should be cleaned and stress collected. When the deaerator reaches the required temperature and pressure, water should be injected into the deaerator by slowly opening the condensate supply valve. The boiler feedwater can be extracted from the deaerator during the water supply stage, but the water supply speed must be much higher than the feedwater extraction speed. Do not pump out feedwater to the boiler until the water level in the water tank has risen to the positive level of the water tank. If the heated condensate does not have a corresponding amount of heating steam, it will cause a change in pressure inside the deaerator. If the pressure inside the deaerator drops naturally, the corresponding condensate should also decrease. If the pressure inside the deaerator rises, the corresponding steam supply should be reduced, and the volume of water in the reactor is still small because the outlet is open. After heating to the operating temperature and pressure, while maintaining this pressure and temperature, the deaerator is filled with water through a nozzle to the positive water level.


Headless deaerator model specifications and technical parameters


-Headless deaerator nozzle parameters:


 

噴嘴型號設計項目內容
PZ(DX)-300額定流量150~350t/h
恒定流速12.5m/s(額定流量的10%~110%范圍內)
-大過濾直徑1mm
PZ(DX)-600額定流量350~700t/h
恒定流量15m/s(額定流量的10%~110%范圍內)
-大過濾直徑1mm
PZ(DX)-1200額定流量800~1320t/h
恒定流量16m/s(額定流量的10%~110%范圍內)
-大過濾直徑1mm

WGCM型-頭除氧技術參數:
 
壓力式(-頭,內置式,噴霧式除氧)WGCM型運行壓力0.1~0.98MPa:
 

型號除氧器額定出力t/h水箱有-容積m3工作壓力Mpa工作溫度℃設備凈-kg
WGCM220/50220500.515822866
WGCM250/602506025260
WGCM300/703007029292
WGCM350/703507030756
WGCM440/10044010048166
WGCM 600/14060014062560
WGCM680/14068014063895
WGCM710/14071014065062
WGCM1080/200108020092220

 
WDCM型-頭除氧技術參數:
 
大氣式(-頭,內置式,噴霧式除氧)WDCM型運行壓力0.02~0.08MPa:
 

型號除氧器額定出力t/h水箱有-容積m3工作壓力Mpa工作溫度℃設備凈-kg
WDCM10/51050.021042680
WDCM20/1020103570
WDCM35/2035208070
WDCM40/2040208320
WDCM50/2550258630
WDCM75/3575359700
WDCM85/3885359900
WDCM130/401304014538
WDCM150/501505018060
WDCM180/601806022300
WDCM220/602206023856
WDCM250/602506024800
WDCM300/703007027705
WDCM350/703507028952

 
注意:以上技術規格參數僅供參考以實際設計為主。



你可能喜歡看:

產品動態

Headless deaerator生產廠家Copyright ? 2012-2023 Lianyungang Lingdong Electromechanical Equipment Co., Ltd all rights reserved

Tel

0518-85370171

主站蜘蛛池模板: 橡皮艇_冲锋舟_充气钓鱼船_橡皮艇价格_海威龙橡皮艇生产厂家-首页 | 泉州小吃培训_福建泉州本地特色小吃培训班|厨师技术培训学校-魅力小吃培训服务机构 | 清关公司_进口报关公司【恒邦】进口报关流程及费用 | 新乡市德诚机电制造有限公司_筛分设备_振动筛机_颗粒筛选机 | 噪声治理_噪音治理公司「杭州创雅环境科技」 | 河北撒旺肥业有限公司 | 康复支具-医用颈托-辅助固定矫形器-骨折固定带生产厂家-安平县康信医疗器械有限公司 | 上饶环亚电脑会计培训学校--电脑学校|上饶电脑学校|上饶电脑培训|会计培训|上饶会计培训|上饶县会计培训|广丰会计培训|玉山会计培训|横峰会计培训|上饶网店培训 上进电缆(嘉兴)股份有限公司官网 - 光伏电缆|防火电缆|电力电缆|铝合金电缆专业生产厂家 | 造型松|泰山迎客松|造型油松-泰安小苹果园林| 上海栋彤物流有限公司-可信赖的物流服务提供商 | 山东净化车间_净化工程_净化公司-山东海蓝净化装饰工程有限公司 山东金起起重机械有限公司[官网]-金桥银路悬臂吊,金起龙门吊,山东金起起重行吊,单梁起重机 | 炸鸡汉堡设备厂家-开汉堡炸鸡店需要的设备全套-广州英迪尔电器有限公司 | 数据采集卡_北京科尔特兴业测控技术研究所 | 信管飞软件官网 - 亚拓软件旗下精细化管理软件、进销存管理软件、混凝土ERP、通风设备ERP、风管报价软件、出纳软件、送货单打印软件、ERP软件等免费下载 | 临淄信息港 - 免费发布房产、招聘、求职、二手、商铺等信息 www.lzzl.net | 联系我们果博东方在线开户客服电话:19038688886 - 黑龙江旺广机械设备有限公司 | 三菱PLC,三菱变频器,三菱伺服,三菱电机--广州凌控 | 湖南一体化污水处理设备_二氧化氯发生器_一体化净水处理设备_消毒设备厂家-湖南东环环保科技有限公司 | 武汉净化机-武汉全热新风换气机-武汉静音送风机-武汉东信新风节能设备有限公司 | 江门摩托车配件|江门电动车配件|江门市盛泰嘉金属塑料制品有限公司 | 石家庄大正机电设备有限公司_ | 济宁山银煤矿机械有限公司,钻采工具,防爆电器,凿岩机械,风动工具,矿山机械,建筑机械,支护设备,通风防尘,铁路设备,仪器仪表,大型设备,矿用泵,钎具类,消防类,矿车类,配件区类 | 宿迁市华泰交通设施有限公司,上海第四代路名牌,天津仿罗马柱路名牌,标准路名牌,路名牌灯箱,公交站台,户外广告灯箱, 交通标志牌,社区阅报栏 | 山东自保温砌块_泰安自保温砌块厂家_山东润德新型建材有限公司【网站】 | 慢直播摄像头厂家,监控直播摄像机厂家,景区慢直播设备,rtmp推流直播摄像头,实时摄像头监控直播-监控慢直播厂家:专注监控慢直播系统解决方案 | 淄博润裕机械设备有限公司-搅拌器,搅拌桨叶,反应釜,机械密封,化工搅拌 | 亿企商贸-亿万企业的商务贸易平台-B2B企业产品发布供求信息平台,一带一路中国企业及产品展示平台,免费企业智能自助建站网络营销推广平台,打造B2B企业黄页产品信息发布推广专业综合电子商务平台! | 生物除臭箱,玻璃钢拱形盖板_厂家_价格-河北润达环保设备有限公司 | 装修工程-钢结构工程-环氧地坪漆-东莞市远鸣装饰工程有限公司 | 泊头市鸿海泵业有限公司--导热油泵,高温油泵,沥青保温泵,圆弧泵,齿轮油泵,高粘度泵,自吸离心油泵,罗茨油泵为主的专业生产厂家 | 通用变频器|国产变频器|深圳变频器厂家-深圳市英捷思技术有限公司 | 液压尾管悬挂器,机械式尾管悬挂器价格,石油套管扶正器厂家,连续油管悬挂器,高压双塞水泥头,免钻塞注水泥分级箍,单塞套管水泥头价格,弹性套管扶正器,铸铝钢性扶正器,钢性套管扶正器厂家 | 膨胀节_波纹膨胀节_非金属膨胀节_波纹管补偿器_膨胀节厂家-江苏苏创管业科技有限公司 | 企多网-B2B网站,B2B商务平台免费b2b,推荐注册送积分,免费注册企业商铺, | 直膨式空调机组_风冷恒温恒湿_转轮式热回收_屋顶式空调机组_德州瑞尼森环保科技有限公司 | 盐城市城镇化建设投资集团有限公司[盐城国资企业、盐城国资集团、盐城文化旅游、盐城基础设施、盐城土地开发、盐城粮食收储] | 真空烘箱-高低温试验箱-防爆烘箱-防爆高低温试验箱-老化房-恒温恒湿箱-高低温试验箱-高低温冲击试验箱厂家—上海标承实验仪器有限公司 | 铁盒|铁罐|马口铁盒|马口铁罐|茶叶铁罐|铁盒-麦氏罐业 | 离婚协议书怎么写_离婚协议书模板标准版_离婚协议书范本下载 - 离婚协议书 | 滑动轴承_无油自润滑轴承_复合干式_含油铜套_石墨铜套-嘉善盛元自润滑轴承厂 | 陕西筱润智能科技有限公司 干部人事智能档案柜 智能密集架 智能档案柜 部队选层文件智能柜 智能枪弹柜 财务智能档案柜 边防武警智能密集架 医院智能档案柜 部队选层文件智能柜智能枪弹柜 学校医院文件柜 企事业单位公检法智能文件柜 生产厂家-筱润智能科技有限公司 RFID射频智能密集架 全自动智能选层档案柜 智能密保柜 枪柜部队营房营具床桌椅办公家具 办公用品档案盒设备货架 全自动智能选层柜生产厂家-筱润智能科技有限公司 |